Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add filters








Year range
1.
Chinese Medical Journal ; (24): 161-170, 2018.
Article in English | WPRIM | ID: wpr-342071

ABSTRACT

<p><b>BACKGROUND</b>Chronic stress contributes to increased risks of atherosclerotic diseases including heart disease, stroke, and transient ischemic attack. However, its underline mechanisms are poorly understood. This study aimed to elucidate the mechanism via which chronic stress exerts its effect on atherosclerosis (AS).</p><p><b>METHODS</b>Fifty male New Zealand white rabbits were used. Aortic balloon-injury model was applied. Both social stress and physical stress methods were adopted to establish chronic stress models. The lumen stenotic degree, intimal and medial areas, maximum fibrous cap thickness, and plaque contents were measured with histological sections. Proteomic methods were applied to detect protein changes in abdominal aortas to identify the specialized mediators. Real-time reverse transcription-polymerase chain reaction was used for further verification and investigation.</p><p><b>RESULTS</b>The stress rabbits exhibited lower body weight, worse fur state, more inactivity behavior, and higher serum cortisol level. Chronic stress was significantly associated with the decreased medial area and increased plaque instability, which was manifested by thinner fibrous caps, larger lipid cores, more macrophages, and new vessels but fewer smooth muscle cells and elastic fibers. After chronic stress, the apoptosis-related genes UBE2K, BAX, FAS, Caspase 3, Caspase 9, and P53 were upregulated, and BCL-2/BAX was down-regulated; the angiogenesis-related genes ANG and VEGF-A were also highly expressed in atherosclerotic arteries.</p><p><b>CONCLUSIONS</b>Rabbit models of chronic stress were successfully established by applying both social stress and physical stress for 8 weeks. Chronic stress can reduce AS tunica media and accelerate plaque instability by promoting apoptosis and neovascularization.</p>

2.
Chinese Journal of Biotechnology ; (12): 507-515, 2004.
Article in English | WPRIM | ID: wpr-270096

ABSTRACT

Using overlapping and mutant oligonucleotides as probes, gel mobility assays and competition experiments identified a sequence from -47 to -32 bp upstream of the LIM2 CAP site, which a lens protein complex bound with high affinity which appeared to bind only to the "sense" strand of the double-stranded DNA molecule. This sequence consisted of a string of four guanine residues followed by seven other nucleotides (AACCTAA) and followed by another four guanines, i.e. GGGGAACCTAAGGGG, called the Hsu element. Promoter-CAT constructs containing this sequence or mutations of the sequence indicated that the Hsu element is located within the basal promoter, and is essential for expression of the LIM2 gene. The trans factors binding to the Hsu element are present throughout development, and appear to be lens-specific. Since the LIM2 gene promoter does not contain a classic TATA box, the Hsu element may serve as the site for binding the RNA polymerase complex.


Subject(s)
Humans , Base Sequence , Eye Proteins , Genetics , Membrane Proteins , Molecular Sequence Data , Promoter Regions, Genetic , TATA Box
3.
Chinese Pharmacological Bulletin ; (12): 16-19, 2002.
Article in Chinese | WPRIM | ID: wpr-857414

ABSTRACT

Calcium ion is involved in many processes of cellular living activities. It is critically important for maintaining normal functions of human body. The review will discuss intracellular calcium regulation, distribution changes of calcium in ischemic cerebravascular and cardiovascular diseases, and intracellular intervention of calcium by specific drugs.

SELECTION OF CITATIONS
SEARCH DETAIL